

SAGAR CEMENTS (R) LIMITED

(A wholly owned subsidiary of SAGAR CEMENTS LIMITED)

(formerly known as BMM CEMENTS LIMITED)

SCRL/IMS/ENV/07

To
The Environment Engineer
AP Pollution Control Board,
Regional Office, Plot no-15
Door No 4-2-740-15
BLT Rajahamsa Villas, Tirumala Nagar,
Tapovanam, apt - 515004

Sub: Environment Statement of M/s Sagar Cements R Ltd for the period April 2019 to March 2020 under Environment Protection rules, 1986.

Ref: Consent Order No: APPCB/KNL/ATP/17731/CFO&HWM/HO/2015-913 dated 21.05.2015 and auto renewal dated 22.03.2016

Dear Sir,

We are submitting herewith Environment Statement for the period April 2019 to March 2020 for Captive Power plant unit of M/s Sagar Cements R Ltd located at Gudipadu village, Yadiki Mandal, Anantapuramu district in Andhra Pradesh.

This is for your kind information and office records please.

Thanking you

Yours faithfully, For Sagar Cements (R) Limited,

E. P. Ranga Reddy (AVP Works)

CC to:

1. The Additional Principal Chief Conservator of Forest (C), Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), 1st and 2nd floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai - 34

The Member Secretary, AndhraPradesh Pollution Control Board, D no 33-26-14 D/2, Near Sunrise hospital, Pushpa Hotel Centre, Chalamavari Street, Kasturibaipet, Vijayawada-520010

(Lk. Sakat

SAGAR CEMENTS (R) LIMITED

(A wholly owned subsidiary of SAGAR CEMENTS LIMITED)

(formerly known as BMM CEMENTS LIMITED)

SCRL/IMS/ENV/07

26.09.2020

To
The Environment Engineer
AP Pollution Control Board,
Regional Office, Plot no-15
Door No 4-2-740-15
BLT Rajahamsa Villas, Tirumala Nagar,
Tapovanam, apt - 515004

Sub: Environment Statement of M/s Sagar Cements R Ltd for the period April 2019 to March 2020 under Environment Protection rules, 1986.

Ref: Consent Order No: APPCB/KNL/ATP/17731/CFO&HWM/HO/2015-913 dated 21.05.2015 and auto renewal dated 22.03.2016

Dear Sir,

We are submitting herewith Environment Statement for the period April 2019 to March 2020 for Captive Power plant unit of M/s Sagar Cements R Ltd located at Gudipadu village, Yadiki Mandal, Anantapuramu district in Andhra Pradesh.

This is for your kind information and office records please.

Thanking you

Yours faithfully, For Sagar Cements (R) Limited,

E. P. Ranga Reddy (AVP Works)

CC to:

- The Additional Principal Chief Conservator of Forest (C), Ministry of Environment, Forest and Climate Change, Regional Office (SEZ), 1st and 2nd floor, Handloom Export Promotion Council, 34, Cathedral Garden Road, Nungambakkam, Chennai - 34
- 4. The Member Secretary, AndhraPradesh Pollution Control Board, D no 33-26-14 D/2, Near Sunrise hospital, Pushpa Hotel Centre, Chalamavari Street, Kasturibaipet, Vijayawada-520010

C. R. Sakat

ENIVIRONMENTAL STATEMENT FORM-V

(See rule 14)

Environmental Statement for the financial year ending with 31st March

PART-A

(i)	Name and address of the owner/occupier of the industry operation or process	Mr E Pandu Ranga Reddy M/s. Sagar Cements R Limited, Gudipadu (V), Yadiki (M), Ananthapuramu (Dist) Andhra Pradesh515408
(ii)	Industry category- Primary- Secondary-	Red category Captive Power Generation
(iii)	Production capacity Units	25 MW Captive Power Plant
(iv)	Year of establishment	2008
(v)	Date of the last Environmental Statement submitted	27.09.2019

PART-B Water and Raw Material Consumption

(i) Water Consumption in m³/d

Process: 64.65 m³/day Cooling: 60.04 m³/day

Captive Power	Process water consumption per unit of product output							
Plant	During the previous Financial	During the current Financial year						
	Year (April 2018 - March 2019)	(April 2019 - March 2020)						
Industrial (Process)	0.136m ³ /MWH	0.230m ³ /MWH						
Industrial (Cooling)	0.175m ³ /MWH	0.214m³/MWH						

(ii) Raw Material Consumption

Name of raw	Name of	Consumption of raw material per unit of output						
materials	Products	During the previous financial year (April 2018 - March 2019)	During the current financial year (April 2019 – March 2020)					
Coal	Power Generation, MWH	0.69T/MWH	0.652T/MWH					

PART-C

Pollution discharged to environment /unit of output (Parameter as specified in the Consent issued)

Pollutants	Quantity of po lutants discharged (mass/ day)	Concentration of pollutants discharged (mass/volume)	Percentage of variation from prescribed standard with reasons.
(a) Water	Zero Discharge	Waste water generated from RO Plant, Cooling tower blow down are collected in common pond, where neutralization takes place. The Treated water used for Dust Suppression / Green Belt. Domestic waste water generated from colony is treated in STP, treated water and sludge generated is used for greenbelt development. Quarterly analysis report of STP treated water is enclosed in annexure I	Nil
(b) Air	Reports	are enclosed in annexure II.	Nil

PART-D Hazardous Wastes

[as specified under hazardous wastes (Management & Handling rules, 1989)].

	Total Quantity (lts)						
Hazardous Waste	During the Previous financial year (April 2018 – March 2019)	During the current financial year (April 2019 - March 2020)					
Waste Oil	300	300					

PART-E Solid Wastes

	Total Quantity							
Solid Waste	During the Previous financial year (April 2018 – March 2019)	During the Previous financial year (April 2019 – March 2020)						
(a) From Process	Nil	Nil						
(b) From Pollution control Facility	Dust collected in ESP is	sent to existing cement plant						
(c) Quantity recycled or reused within the unit	Dust collected in ESP is sent	to existing cement plant(captive)						

PART-F

Please specify the characterizations (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Hazardous waste:

 No Hazardous waste is generated from the process except used oil which is generated from machineries and it is sent to authorize recycler/used in-house.

Solid Waste:

Battery wastes are sold to dealers on buy back basis.

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

M/s Sagar Cements (R) Ltd is being operated captive power plant on environment friendly technology i.e. installed Air cool condenser instead of water cooled condenser and provided dry ash handling system. The stack emission is controlled by ESP. Bag filters installed at various points to mitigate the fugitive emissions generated from transfer points. The ash collected from the pollution control facility is used in the process of existing cement plant, thus 100% ash utilization is being taken place.

PART-H

Additional measures/investment proposal for environmental protection including abatement of pollution/prevention of pollution.

- o All main & internal roads are concreted to avoid fugitive emissions.
- Green development is our ongoing process within our plant area and also plant boundary. In the year 2019-2020 a total of 122717 including Mines, Cement, Captive power plant and colony areas.
- A total of 8070 saplings planted under Miyawaki programme in an area of 0.5acre.

PART-I

Any other particulars for improving the quality of the environment.

- o Monitoring of Stack emissions, Air and Water quality is being done regularly
- Celebration of Environment Day for environment awareness among employees and contract workman within the plant premises.
- To reduce the road dust emissions further, we have mobile water tanker and sweeping machine for regular cleaning of roads.
- The company obtained IMS Certification (ISO 9001:2015, ISO 14001:2015 & OSHAS 18001) effectively from 24.05.2016

(Signature of a person carrying out an industry

- operation or process)

Date: 26 109 2020

B.S. ENVI - TECH PVT. LTD.

ENVIRONMENTAL CONSULTANTS & ANALYTICAL LABORATORY

4st Floor, 'AMITY VILLE', 12-13-1270/71/73, St. Ann's Road, Tarnaka, Secunderabad - 500 017, Telangana, INDIA Ph.: +91 40 49723062 / 27016806 Fax: +91 40 49783063 Email: info@bsenvitech.com Website: www.bsenvitech.com

TEST REPORT

WATER QUALITY DATA

Client

: Sagar Cements (R) Limited

(Formerly known as BMM Cements Limited),

Location

: Gudipadu(V), Yadiki(M), Anantapur(D), A.P.,

Season : Mon

: Monsoon Season - 2019

Location Name : STP Water Date of Sampling : 30.07.2019

S.No	Parameters	Res	ults	GSR 422 (E) General Standards for	
	Parameters	STP INLET		Discharge of Effluents Inland Surface Water	
1	Colour (Hazen Units)	Greyish	10	See Note-1	
2	Odour	Dis-Agreeable	Agreeable	See Note-1	
3	pH	6.82	7.48	5.5- 9.0	
4	Oil & Grease, mg/l	8	2	10	
5	Total Suspended Solids, mg/l	118	40	100	
6	Total Dissolved Solids, mg/l	1005	965	2100	
7	BOD for 3days at 270c, mg/l	110	15	30	
8	COD mg/l	244	60	250	
9	Chloride as Cl, mg/l	214	214	1000	
10	Fluoride as F, mg/l	1.15	1.10	2.0	
11	Dissolved Phosphate, mg/l	1.12	1.10	5.0	
12	Percent Sodium,	56.9	55.6	***	
13	Sulphide as S, mg/l	1.3	0.3	2.0	
14	Boron as B, mg/l	0.24	0.20	2.0	
15	Residual Sodium Carbonate	Nil	Nil		
16	Sulphates as So4, mg/l	121	121	1000	
17	Iron as Fe, mg/l	0.80	0.32	3.0	

Note 1: All efforts should be made to remove colour and unpleasant odour as far as practicable

Authorized Signatory

B.S. ENVI - TECH PVT. LTD.

ENVIRONMENTAL CONSULTANTS & ANALYTICAL LABORATORY

4" Floor, 'AMITY VILLE', 12-13-1270/71/73, St. Ann's Road, Tarnaka, Secunderabad - 500 017, Telangana, INDIA Ph.: +91 40 49783062 / 27016806 Fax: +91 40 49783063 Email: info@bsenvitech.com Website: www.bsenvitech.com

TEST REPORT

WATER QUALITY DATA

Client

: Gudipadu Limestone Mine of BMM Cements Limited

Location

: Gudipadu(V), Yadiki(M), Anantapur(D), A.P.,

Season

: Post Monsoon Season - 2019

Location Name : STP Water Date of Sampling : 22.11.2019

S.No	Parameters	Res	ults	GSR 422 (E) General Standards fo	
	- Farameters	STP INLET STP OUTLET		Discharge of Effluents Inland Surface Water	
1	Colour (Hazen Units)	Greyish	10	See Note-1	
2	Odour	Dis-Agreeable	Agreeable	See Note-1	
3	pH	6.93	7.23	5.5- 9.0	
4	Oil & Grease, mg/l	6	2	10	
5	Total Suspended Solids, mg/l	250	75	100	
6	Total Dissolved Solids, mg/l	1022	970	2100	
7	BOD for 3days at 270c, mg/l	108	12	30	
8	COD mg/l	240	40	250	
9	Chloride as Cl, mg/l	220	205	1000	
10	Fluoride as F. mg/l	1.18	1.02	2.0	
11	Dissolved Phosphate, mg/l	2.5	1.10	5.0	
12	Percent Sodium,	57.5	56.8	***	
13	Sulphide as S, mg/l	1.2	0.2	2.0	
14	Boron as B, mg/l	0.28	0.12	2.0	
15	Residual Sodium Carbonate	Nil	Nil	***	
16	Sulphates as So4, mg/l	126	119	1000	
17	Iron as Fe, mg/l	0.88	0.25	3.0	

Note 1: All efforts should be made to remove colour and unpleasant odour as far as practicable

Authorized Signatory

B.S. ENVI - TECH PVT. LTD.

ENVIRONMENTAL CONSULTANTS & ANALYTICAL LABORATORY

4th Floor, 'AMITY VILLE', 12-13-1270/71/73, St. Ann's Road,
Tarnaka, Secunderabad - 500 017, Telangana, INDIA
Ph.: +91 40 49783062 / 27016806 Fax: +91 40 49783063
Email: info@bsenvitech.com Website: www.bsenvitech.com

TEST REPORT

WATER QUALITY DATA

Client

: Gudipadu Limestone Mine of BMM Cements Limited,

Location

: Gudipadu(V), Yadiki(M), Anantapur(D), A.P.,

Season

: Winter Season - 2019-20

Location Name : STP Water Date of Sampling : 28.02.2020

S.No	Parameters	Res	ults	GSR 422 (E) General Standards for		
5.110	Parameters	STP INLET STP OUTLET		Discharge of Effluent Inland Surface Water		
1	Colour (Hazen Units)	Greyish	10	See Note-1		
2	Odour	Dis-Agreeable	Agreeable	See Note-1		
3	pH	6.92	7.25	5.5- 9.0		
4	Oil & Grease, mg/l	7	2	10		
5	Total Suspended Solids, mg/l	200	50	100		
6	Total Dissolved Solids, mg/l	1180	1140	2100		
7	BOD for 3days at 270c, mg/l	124	14	30		
- 8	COD mg/I	288	48	250		
9	Chloride as Cl, mg/l	278	261	1000		
10	Fluoride as F, mg/l	1.28	1.1	2.0		
11	Dissolved Phosphate, mg/l	2.1	1.2	5.0		
12	Percent Sodium,	59.1	57.0			
13	Sulphide as S, mg/l	1.2	0.2	2.0		
14	Boron as B, mg/l	0.32	0.28	2.0		
15	Residual Sodium Carbonate	Nil	Nil			
16	Sulphates as So4, mg/l	142	134	1000		
17	Iron as Fe, mg/l	0.99	0.30	3.0		

Note 1: All efforts should be made to remove colour and unpleasant odour as far as practicable

Authorized Signatory

Sagar Cement (R) Ltd (Formerly known as BMM Cements Ltd)

AMBIENT AIR QUALITY REPORT

Parameter	UOM	April 19	May 19	June 19	July 19	Aug 19	Sep 19	Oct 19	Nov 19	Dec 19	Jan 20	Feb 20	Mar 20
			-		Ne	ar Pump	House						
PM ₁₀		72	75	62	65	54	62	68	72	76	71	66	64
PM _{2.5}	µg/m³	38	42	32	36	28	34	37	38	40	38	34	32
SO ₂		10.8	10.6	10.2	11.8	11.2	11.8	12.8	11.4	12.4	13.4	14.8	13.4
NO ₂	10.000	11.8	11.5	11.4	11.5	12.5	12.6	15.9	12.6	14.6	15.8	16.2	15.6
emonico de			I SAME TO SERVICE STATE OF THE		O	pposite t	o ESP						
PM ₁₀		76	72	68	76	60	68	76	78	84	80	78	76
PM _{2.5}	μg/m³	44	46	34	32	30	- 37	48	46	44	42	38	36
SO ₂		10.5	10.4	10.4	10.3	10.5	11.2	13.5	12.6	15.8	16.8	18.2	16.2
NO ₂		12.4	12.6	12.6	11.2	11.7	13.5	16.6	14.8	18.2	18.6	21.6	18.4

CA-SKS

Annexure II

Sagar Cement (R) Ltd (Formerly known as BMM Cements Ltd)

STACK EMISSION REPORT

Location	Parameter	UOM	April 19	May 19	June 19	July 19	Aug 19	Sep 19	Oct 19	Nov 19	Dec 19	Jan 20	Feb 20	Mar 20
CPP PM		15.47	14.15	15.93	15.18	14.52	13.03	15.23	14.26	16.51	17.91	15.76	16.73	
Stack	SO ₂	mg/Nm ³	465	475	485	475	385	442	484	437	568	584	628	593.3
-53550	NOv	1 7	85	92	95	90.67	62	92	75	76.33	52	42	36	43.33

Standard: - PM: 50mg/Nm³; SO₂: 600mg/Nm³; NO_X: 300mg/Nm³

Chaffe Will